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ABSTRACT

This paper sets about optimizing the process whereby a 2D texture plane is mapped
onto a 3-D quadrilateral planar surface, with a view to achieving enhanced realism of
real-time graphical applications such as virtual reality systems.
Each of the possible texturing algorithms are developed1 and their performance
determined2 by measuring the time taken to render five thousand randomly generated
three dimensional quadrilaterals. Included in these algorithms is a previously
unpublished algorithm known as the “Hyperbolic Algorithm”3 and a newly developed
algorithm by myself, which I have called the “Adaptive Scanline Sub-division
Algorithm”.
The later algorithm had two possible implementations, one of which was shown to
offer excellent image quality, while offering the advantage of increased performance
over both scan line sub-division and true mapping. My implementations of hyperbolic
mapping however gave both inferior image quality and performance to true mapping as
did the second implementation of my adaptive scanline algorithm.
The results obtained remove much of the here say and mystery, that have surrounded
the use of perspectively correct texture mapping algorithms in real time, and allow us
to draw numerous interesting facts from the performance tests.
Among these is the fact that scanline subdivision only offers superior performance over
true mapping when the pixels between the divides is set to eight or more. Area sub-
division is pointless beyond level one and should only be implemented with linear and
quadratic approximations4. In addition, polynomial approximations of an order of four
or more are shown to be slower than true mapping. Finally utilizing triangles as a
fundamental rendering primitive has a performance disadvantage over quadrilaterals.
The results in this paper provide the virtual reality programmer with solid empirical
data, that enables him/her to select the correct algorithm for a desired image quality
and a given level of performance.

                                               
1 The following algorithms are considered; true, hyperbolic, linear, quadratic, cubic, Taylor, area sub-
division, scanline sub-division, adaptive scanline sub-division. The Constant Z algorithm is not
considered as it does not allow randomly oriented polygons.
2 Each algorithm was optimized in so far as possible by the author, however hardware or assembler
optimizations were not considered. In addition results are quoted in msecs per 80x80 pixel
quadrilateral, dispensing with ambiguous metrics such as pixels per second or polygons per second.
Such metrics either disregard the set up overhead per polygon or indeed the size of each polygon. We
do however rely on subjective means in determining image quality.
3 This algorithm was however, published on the internet by Mr Jan Vondrak.
4 Only linear, quadratic and cubic approximations were tested.
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1. INTRODUCTION

1.1 INTRODUCTION TO TEXTURE MAPPING
Texture mapping is about calculating the geometric correspondence between points in
texture space or uv space and object space.

ƒ

X,Y                  p                          3 D Surface

U,V

v                                                                   y

u                                                                   x

z

Texture                                                Output Screen

Diagram of functions from u,v to xo,yo,zo (object) to xs,ys (screen)

In order to determine this correspondence we parameterize texture space using u, v co-
ordinates, and the object space, using the homogenous co-ordinate system. We then
establish the true texture co-ordinates at the quadrilateral vertices and decide on a
means of interpolating these values as we move down and across the quadrilateral on
screen. We could derive a function that determines the texture co-ordinates from
screen pixel co-ordinates, however, it is shown that this involves the solving of a
quadratic equation for each texture co-ordinate at each pixel value5 making it
unsuitable for real time applications.

1.2 THE NATURE OF THE PROBLEM
We wish to optimize the process whereby a 2D texture plane is mapped onto a 3-D
quadrilateral planar surface, with a view to achieving enhanced realism of real-time
graphical applications such as virtual reality systems.
When mapping a 2-D texture plane onto a 3-D quadrilateral surface and then
projecting the surface onto the 2-D screen display, we have numerous choices as to the
nature of the mapping or indeed how we interpolate the texture co-ordinates across the

                                               
5 Refer to HOUR83.
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quadrilateral. We shall see that in order to obtain a perfect image quality we carry out a
true mapping which involves two divisions per pixel6. Other mappings, such as an
affine mapping are only approximating algorithms, but will have lower computational
overhead7. Such mappings will give a lower image quality8, but may be all that is
required in a given set of circumstances. In general, the more sophisticated the
approximating algorithm, the higher the image quality and indeed the higher the
associated overhead. Indeed it is important that any such approximating algorithm
gives a performance at least as good as a true perspective mapper.
This paper examines the performance of true mapping, relative to the various
approximating techniques and attempts to establish which algorithms are worth
implementing. Tests were also performed to examine the relative performances of
mapping two triangles as oppose to a quadrilateral.
Each algorithm is optimized in so far as possible by the author, however special
purpose hardware, assembler and indeed certain optimization techniques such as fixed
point mathematics are not considered.

                                               
6 One divide per pixel is possible, however two multiplications per pixel are also required.
7 An affine mapping has two additions per pixel.
8 Refer to Colour Plates V and VIII.
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2. SCANLINE ALGORITHMS FOR PERSPECTIVE
TEXTURE MAPPING

2.1 TRUE PERSPECTIVE TEXTURE MAPPING

2.1.1 True Perspective Mapping With Divides.
Examining the geometry of texture mapped polygon.

xs

ys

y

x

z

If we examine the texture co-ordinates along the scan line from Pa to Pb  we can
determine that they do not vary in a linear manner9 with respect to xs.(similarly for a
vertical scanline with respect to ys). It can however be determined that u/z and v/z or
indeed, u/w and v/w are linear with respect to the screen co-ordinates. Thus, if we
interpolate u/w and v/w across a scan line with respect to xs (similarly for a vertical
scanline with respect to ys) and then divide by 1/w we can determine the true texture
co-ordinates. Thus, for each pixel we will need to carry out two divisions per pixel. We
will also have other calculations to carry out in order to interpolate 1/w and set up
computations for each scan line and indeed each quadrilateral.
We could also texture map a quadrilateral by sub-dividing it into two triangles and
developing an algorithm to map each triangle in turn. Results however indicate that this
actually increases the associated overhead as we now have a larger set up overhead.

                                               
9 They fail to take the form y = mx + c, but take on a curvilinear shape.

P1

P3

P0

Pb (ub,vb)

Pa and Pb are points in screen space,
perspectively projected from the edges of
the quadrilateral.



7

2.1.2 Hyperbolic Texture Mapping.
We have seen that true mapping utilzes expensive divides. In my search for algorithms
that would increase the performance of perspective texture mapping, I came across a
new algorithm for texture mapping. This algorithm was first brought to the attention of
the world by Mr Jan Vondrak in an article posted on the internet. I however, did not
hear about this algorithm until I visited Mr Mark Feldman’s web site10. The algorithm
is so named as it is essentially a development of Bresenham’s algorithm for elliptical
shapes11. The algorithm is in fact a true perspective mapper without the per pixel
divides. It may therefore provide us with a degree of performance enhancement while
maintaining the image quality of true mapping.
The details are as follows;
From HECK89 it is shown that;

( )
( )

u
a x x b
c x x d

a

a

=
! +

! +

Cross multiplying and bringing everything to one side results in;

( ) ( ) ( )( )p u x a x x b u c x x da a, = ! + ! ! + = 0

Similarly for v;

( ) ( ) ( )( )q v x e x x f v g x x ha a, = ! + ! ! + = 0

These are functions that equal zero12 if the values of the texture co-ordinates for a
given screen co-ordinate represent their corresponding true values. Thus, if we were to
start off on one side of the quadrilateral, (ua and va as before) knowing the true values
of u and v, we should have p(u,x) and q(v,x) equal to zero. If we then increment x by
one and note the effect on p(u,x) and q(v,x) we should be able to determine the
increment or decrement in u and v to bring these functions back to zero.
This is easy enough to implement. However, when the image is far away we need to
have large step values for the texture co-ordinates, and as we move nearer to the
viewer we need to reduce the step values, otherwise performance suffers severely.

                                               
10 http://www.netcom.com/~pcgpe/tmap.html
11 I myself am unconvinced of the reasoning behind the name.
12 They will be close to zero, allowing for integer increments in x, u and v.
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2.2 APPROXIMATING PERSPECTIVE TEXTURE MAPPING

As can be seen from the previous discussion true perspective texture mapping requires
a high degree of computational overhead, regardless of any sophisticated scan line
algorithm we may develop. Such computational expense may in some cases only add
marginal realism to an image that could be rendered using an approximating algorithm.
In the context of real time applications it is therefore worthwhile to examine
approximating algorithms, particularly those that are easily optimised in a scan line
format, and those that are computationaly less expensive than true perspective
mapping13. We will consider the following approximating algorithms;

• Linear Interpolation.
• Quadratic Interpolation.
• Cubic Interpolation.
• Taylor Series.
• Area Sub-Division.
• Scanline Sub-Division.
• Adaptive Scanline Sub-Division.

The first four algorithms are essentially polynomial approximations. We will show that
higher order polynomials give good image quality, but lack performance. The other
algorithms represent good alternatives to polynomial interpolation, with scan line sub-
division and adaptive scanline sub-division showing the optimum trade off, of
performance versus image quality.
The above polynomial approximations do however lend themselves easily to being
incorporated into a scan line algorithm and have previously been discussed in
WOLB90. WOLB90 also discussed the area sub-division algorithm. LIEN87 discusses
the Taylor series method briefly, while Michael Abrash14, and HECKER95d. mention
the scan line sub-division algorithm as implemented in a computer game engine.
HECK91b was the originator of this algorithm however, where it is referred to as piece
wise linear approximation. The adaptive scanline sub-division algorithm is a
development of this later algorithm, and to the authors knowledge, this paper is the
first publication of any such algorithm.

                                               
13 In general the more complex the approximation is, the more likely it is to have a similar
computational overhead to true perspective mapping.
14 ftp://ftp.idsoftware.com/mikeab/cgdctalk.doc
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2.2.1 Linear Interpolation
This method of texture mapping is similar to the method described under true
perspective mapping except the u and v co-ordinates are interpolated across the
polygon with respect to xs and ys, rather than with respect to 1/w. This does away with
the need for two divides per pixel.
As before, we determine the u,v values at the vertices. From these we derive the u, v
co-ordinates along the edges by simple interpolation in xs and ys.

xs

ys

y

x

z

Thus, knowing the values of u and v at points Pa and Pb  we simply linearly interpolate
between ua and ub as well as va and vb with respect to xs (similarly for a vertical scanline
with respect to ys). We will thus have to carry out two additions per pixel rather than
two divisions.

2.2.2 Quadratic Interpolation
As stated previously, it can be shown that the texture co-ordinates vary across a scan
line in a curvilinear manner, similar to a quadratic curve. As such we can interpolate
the co-ordinates across a scanline using quadratic equations.
This will take on the following form;

u a x b x c
v a x b x c

u u u

v v v

= + +

= + +

2

2

where x x x
x x

x a

b a

=
!

!
, thus ranging from 0 to 1, spanning the length of the scanline.

Since we have three unknown coefficients for each mapping function, three (x, u) and
(x, v) pairs must be supplied. The three points we select are the two ends of the
scanline and its midpoint. From these the coefficients of the quadratic equations can be

P2

P3

P1

Pb (ub,vb)

Pa and Pb are points in screen space,
perspectively projected from the edges of
the quadrilateral.
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determined and a scan line algorithm developed using forward differences or partial
differentiation. Resulting images using this algorithm are reasonable and it is shown
that it also provides superior performance over true mapping.

2.2.3 Cubic Interpolation
Given the success of quadratic interpolation, it is natural to investigate how much
better the results may be with cubic interpolation. A third-degree polynomial mapping
function for u and v has the form;

u a x b x c x d
v a x b x c x d

u u u u

v v v v

= + + +

= + + +

3 2

3 2

again where x is a normalised parameter in the range from 0 to 115, spanning the length
of the scanline.
This time, since we have four unknown coefficients for each equation, four constraints
must be imposed. In this instance we determine the texture co-ordinates at the edges of
the scan line as before, and at two further points between the edge points16. The two
points that I selected are the points that divide the scanline in three. The algorithm is
exactly the same as quadratic interpolation, except that an additional coefficient needs
to be determined and we utilize three forward differences rather than two. Resulting
images show a remarkable improvement on quadratic interpolation, and again the
algorithm does offer superior performance over true mapping.

2.2.4 Taylor Series
Obviously as we increase the order of the polynomial the better the approximation.
However increasing the order of the polynomial will also increase the computational
overhead and indeed the difficulty in arriving at the polynomial coefficients. The use of
a Taylor expansion will simplify such derivations and may increase computational
efficiency.
A Taylor expansion of the function f around the point x is;

( ) ( ) ( ) ( ) ( )f x h f x hf x h f x h f x+ = + + + +’
!

’’
!

’’’ .........
2 3

2 3

                                               
15 x x x

x x
a

b a

=
!

!
16 WOLB90 uses edges constraints and first derivative constraints (Hermite Interpolation). Although
it would appear to be computationally more efficient than the cubic interpolating algorithm suggested
above it resulted in images approaching the quality of a quadratic interpolation.
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If we disregard derivatives of an order greater than three and step the function in
increments of 1 rather than h then;

( ) ( ) ( ) ( ) ( )f x f x f x f x f x+ = + + +1 1
2

1
6

’ ’’ ’’’

Adapting the above to a function of u;

u u u u ux x x x x+ = + + +1
1
2

1
6

’ ’’ ’’’

We then carry out a Taylor expansion of the cubic approximation which simplifies
down to the set of forward differences as used in the cubic approximation. Thus the
only way of achieving computational gain over a cubic approximation is to drop the
higher order forward differences which will drastically effect image quality. We
therefore, conclude that this algorithm is not worth implementing, but does facilitate
the development if a scanline algorithm.

2.2.5 Area Sub Division
If the quadrilateral that we wish to texture map is at a constant z, or parallel to the
viewing plane, the texture co-ordinates will be linear with respect to the screen co-
ordinates. Indeed, if we have only a minor variation in the z co-ordinate along the
quadrilateral, a linear map will give very good image quality, while giving maximum
performance gain. Bearing this in mind, if we were to divide the quadrilateral into a
series of smaller quadrilaterals, in which the difference in z is small, we could use a
linear approximating algorithm and generate images that would be of a quality
approaching that of a true perspectively mapped image. This would have to be done
such that the level of sub-division did not make it computationally more expensive than
true perspective mapping.

(a) Shows image before sub division.
(b) Shows image at first level of subdivision.
(c) Shows image at second level of subdivision.

(a) (b) (c)
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At each level of sub-division the true texture co-ordinates would need to be calculated
for each of the sub-quadrilateral vertices. We could then linearly interpolate these
values between the vertices as before17 or interpolate by some other means.

An efficient means of carrying out this sub-division was developed and it was shown
that performance gains were apparent over true mapping for one level of sub-division,
however further levels of sub-division made true mapping more attractive from a
performance view. The use of parallel processing would greatly enhance the
performance of this algorithm18.

2.2.6 Scanline Sub-Division
The scanline sub-division algorithm calculates intermittent true values of texture co-
ordinates along a scanline, while linearly interpolating the values between these true
values. Thus the resulting performance will be somewhere in between that of a linear
approximating algorithm and that of a true perspective mapper19. By setting the
frequency (pixels between divisions) at which true texture co-ordinates are determined
we can vary the performance of the mapper within these limits20.

                                               
17 WOLB90 demonstrated the use of sub-division using linear, quadratic and cubic interpolation. He
noted that less sub-division was required for higher order interpolation functions in order to obtain an
image of a quality approaching that of a true perspective mapping. It is worth noting that we could
easily use a different approximating algorithm to determine the values of the texture co-ordinates
between the vertices of each sub-quadrilateral.
18 Refer to GILL89.
19 Because of additional overhead it will in fact be slower. The scanline sub-division algorithm had a
time of 30.03 msecs per quadrilateral at one pixel between the divides. This would be equivalent to
true mapping which was timed at 18.76 msecs. Likewise, the scanline sub-division algorithm was
timed at 16.41 msecs for a pixel number of thirty two between divides. This would be close to linear
mapping which was timed at 14.83 msecs per quadrilateral. Again the scanline sub-division is slower.
20 Michael Abrash discusses this briefly at ftp://ftp.idsoftware.com/mikeab/cgdctalk.doc. More detail
can be found at http://www.netcom.com/~pcgpe/tmap.html.

   u10, v10
      u0, v0

      u2, v2
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       u3, v3

    u12, v12

u11, v11
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Diagram showing the texture values at the vertices
of a quadrilateral and a sub-quadrilateral at level
one.
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This algorithm gives excellent results21 and is quicker than true mapping when the
pixels between the divides is set to eight or greater22. Indeed, with the number of pixels
between divides set to eight, there was little perceptible difference in image quality
between true perspective mapping and scanline sub-division. With a pixel block of
sixteen the image quality is still very high, while at thirty two it is beginning to degrade
to an unacceptable level.

2.2.7 Adaptive Scanline Subdivision.
The previously described algorithm can be speeded up if we were able to vary the
number of pixels between divides, according to either how near or far the object was
from the viewer, or the difference in z co-ordinates at the quadrilateral edges. This can
be done on a per scan line basis, i.e. the number of pixels between divides is
determined for each scan line, or it can be done as we move across the scan line.
The former method simply would carry out a test to determine the change in z from
edge to edge across a scan line and arrive at a predetermined number of pixels between
the divides. The distance a quadrilateral is from the viewer can also be incorporated
into the logic, with additional overhead. The method does however show excellent
image quality, while offering increased performance over true mapping. It also offers
increased performance over scan-line sub-division, when the resulting image quality is
taken into account.
The later method involves the recalculation of the pixels between the divides as we
move across the scan line. At points further away from the viewer we would require a
smaller number of pixels between the divides, where as at z values closer to the viewer,
larger values would suffice. We can do this by determining the difference between the
true and linear texture co-ordinates as we move across a scan line. If the difference
between the two sets of values is large we lower the pixels between the divides, and if
the difference is small we can higher the number of pixels between the divides. This
algorithm did not give enhanced performance over true mapping, as it was necessary to
set an upper limit on the pixel number between the divides, as du and dv needed to be
kept constant across a scan line.

                                               
21 Refer to Colour Plate XXI.
22 Refer to Performance Comparisons section.
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3. ALGORITHM PERFORMANCE COMPARISONS

3.1 METHOD

The following test results were obtained on a Pentium PC with a 100 MHz processor,
16 Mbytes of RAM. All code was written in C++ and compiled using a Borland C++
4.5 compiler, with optimisations set for speed.
The algorithms used have been previously described, however in order to get valid
timings for the execution of each algorithm it was necessary to generate 1,00023

randomly orientated quadrilaterals and texture map each one. The total time taken to
do this was measured and divided by 1,000 to get the average execution time per
quadrilateral. This was done five times for each algorithm.
The code was executed (and compiled for) under DOS as Windows added between 7
and 12 msecs per quadrilateral, with much larger standard deviations.
The vector co-ordinates of each vertex were limited to ensure the quadrilateral was
clipped or limited to screen co-ordinates. Such a method of clipping resulted in the
appearance of some unclipped quadrilaterals (this is where sections of a quadrilateral
appear on several edges on screen in non contiguous sections). This occurred on a
sporadic basis only and would not invalidate the results.
In addition at high levels of sub-division the texture rendering routine would crash.
This was as a result of dy being calculated to be zero. A fix to each rendering routine
would have added to the program logic (and therefore the associated overhead) and
was therefore not included in the implementation of the algorithms. This problem was
overcome in the performance tests by simply reducing the sample size.

                                               
23 For area sub-division it was necessary to reduce the number of tests to 300 for level 2 and, 25 for
level 3 as invalid quadrilaterals were being produced. This however does not invalidate my
conclusions.
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3.2 RESULTS

Average per time per 80x80 pixel quadrilateral (msecs)

Run 1 Run 2 Run 3 Run 4 Run 5 Average

True Mappings

True Quadrilateral 18.73 18.73 18.78 18.78 18.78 18.76
True Triangle 21.97 21.97 21.97 21.97 21.97 21.97
Hyperbolic (Slow) 36.74 36.80 36.80 36.80 36.80 36.79
Hyperbolic (Fast) 24.50 24.55 24.50 24.49 24.49 24.51

Approximating Algorithms
Linear 14.82 14.83 14.83 14.83 14.83 14.83
Linear (True Edges) 15.10 15.16 15.15 15.16 15.16 15.15
Quadratic 16.47 16.48 16.48 16.47 16.48 16.48
Cubic 17.90 17.96 17.96 17.97 17.96 17.95
Scan line Sub-division (dynamic)

1 pixel between divides 29.98 30.10 29.99 30.05 30.04 30.03
2 pixels between divides 22.91 22.90 22.85 22.91 22.91 22.90
4 pixels between divides 19.44 19.44 19.44 19.45 19.44 19.44
8 pixels between divides 17.74 17.74 17.69 17.74 17.74 17.73
16 pixels between divides 16.86 16.86 16.86 16.87 16.86 16.86
32 pixels between divides 16.37 16.42 16.42 16.43 16.42 16.41

Adaptive Scan line Sub-division (static)
Max pixel block 8 pixels 28.50 28.51 28.45 28.51 28.46 28.49
Max pixel block 16 pixels 27.74 27.74 27.74 27.74 27.73 27.74

Adaptive Scan line Sub-division
Pixel blocks 2,4,8,16 18.73 18.73 18.73 18.73 18.73 18.73
Pixel blocks 4,8,16,32 17.41 17.41 17.36 17.35 17.36 17.38
Pixel blocks 8,16,32,64 16.70 16.70 16.64 16.70 16.64 16.68

Adaptive Scan line Sub-division, Z
Pixel blocks 2,4,8,16 19.55 19.55 19.56 19.55 19.56 19.55
Pixel blocks 4,8,16,32 17.79 17.80 17.80 17.80 17.79 17.80
Pixel blocks 8,16,32,64 16.91 16.92 16.92 16.92 16.92 16.92

Area Sub-division, Linear
Level 1 16.04 16.09 16.09 16.10 16.04 16.07
Level 2 * 20.17 20.33 20.33 20.33 20.33 20.30
Level 3** 30.80 30.40 30.80 30.80 30.80 30.72

Area Sub-division, Quadratic
Level 1 18.46 18.40 18.46 18.45 18.46 18.45
Level 2* 23.96 24.17 24.17 24.17 24.17 24.13
Level 3** 37.20 39.60 39.60 39.60 39.60 39.12

Area Sub-division, Cubic
Level 1 20.27 20.32 20.32 20.32 20.36 20.32
Level 2* 26.90 26.73 26.90 26.93 26.93 26.88
Level 3** 44.00 43.60 44.00 44.00 44.00 43.92

*Sample size decreased to 300
**Sample size decreased to 25
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4. CONCLUSION

Overall, the performance of our true and approximating texture mapping algorithms
was quite good, as we managed to reduce the rendering time to below the required
level for good quality real time graphics. We would not however, be able to draw
many polygons on screen without further speeding up the algorithm. Further
enhancements could easily be achieved through the use of enhanced hardware24 or
indeed the use of assembler code25. The results also allow us to determine which
approximating algorithms are worth while implementing, having specified a proper
means of comparison and therefore clear up the mystic that has previously surrounded
perspective texture mapping algorithms.
The results show that sub-dividing a quadrilateral into triangles, results in increased
overhead and results in a slower texture mapping speed. This demonstrates that a
simple change to an algorithm can generate higher performance levels, without having
to resort to assembler or hardware. This is not to say that using triangles does not have
any advantages. Texture mapping triangles is easily optimized using hardware and as
all triangles are planar they do not require a planarity test. Consequently, the use of
edge classes for triangles is also not required, as an algorithm can be derived based
solely on the vertices26. Indeed, most multi-sided objects are easily broken down into a
series of triangles rather than quadrilaterals. These points are however outweighed by
the superior performance of quadrilaterals over triangles, and bearing in mind that
quadrilaterals are also easily optimized in hardware. Indeed, most virtual reality
systems will rely heavily on texture mapped quadrilaterals and most objects are also
easily  broken down into a series of quadrilaterals. Such systems will not generate non
planar quadrilaterals and will therefore not require a test of planarity. In addition,
mapping a quadrilateral using an approximating technique will not result in large
diagonal distortions as with triangle sub-division27.
Having discovered a new texture mapping algorithm, namely Hyperbolic texture
mapping, I was somewhat disappointed to discover it was slower than true mapping in
addition to generating an inferior image. I did not however implement an exact copy of
the original algorithm as per the author, as I catered for all orientations of the
quadrilaterals. Performance however may be enhanced through either restricting the

                                               
24 Refer to COOK87, KIRK90 & OKA87 for hardware architectures specifically designed for texture
mapping. GUAN94 details hardware used for 3-D textures.
25 Refer to HECKER95a - HECKER96 or
http://www.gamers.org/dEngine/quote/papers/checker_texmap.html.
26 Such an algorithm would enhance the performance of triangular mapping, however my results
indicate that quadrilateral mapping is still quicker taking this into account.
27 Refer to the comparison of Colour Plates XXIX and XXX. The later plate was mapped using
triangles. Distortion is noted across the diagonal.
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vertices of the polygons that are generated, or through an alteration in the algorithm. A
speed increase may also be achieved through the use of fixed point numbers, as the
division and multiplication necessary to increment or decrement the step values could
then be achieved using a shift operation. A corresponding increase however would also
be noted in true texture mapping, if fixed point numbers were used. Such an increase in
performance would be marginal, given that, in recent years the gap between the speed
of floating point calculations relative to integer calculations has been drastically
reduced28. Given these two potential performance enhancements, I am somewhat
reluctant to disregard hyperbolic texture mapping without further work.
Of all the approximating algorithms the scan line subdivision algorithm offered both
good image quality and a marginal increases in performance over true mapping. Such
increase in performance was only noted when the pixels between the divides were set
to eight or more. Bearing this in mind I developed two algorithms which were
essentially a development of the scan line sub-division algorithm. As these new
algorithms essentially determined the pixels between divides in an intelligent manner I
called them “Adaptive Scanline Sub-division.” One of these algorithms recalculates
the pixels between divides as we move across a scan line, while the other recalculates
the pixels between divides on a per scan line basis. The later algorithm gives superior
performance to scan line sub division and true mapping despite its increased overhead
per scanline. The former algorithm performs badly in the test, but would offer excellent
quality images at good performance levels for quadrilaterals that lie obliquely to the
screen.
The results expose the weakness of using area sub-division with approximating
algorithms as no performance enhancements over true mapping were noted beyond
level one29. This was only the case for linear and quadratic approximations, as sub-
dividing a cubic approximation to level one was actually slower than true mapping.
Finally, the use of polynomial approximations beyond the power of three would not
offer us any performance gain over true mapping, even using a Taylor approximation.

                                               
28 Some chip manufacturers quote instruction timings for floating point calculations lower than
integer calculations.
29 Parallel hardware configurations were not considered. Refer to GILL89.
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